Bifurcation structure of two Coupled Periodically driven double-well Duffing Oscillators

نویسنده

  • Anatole Kenfack
چکیده

The bifurcation structure of coupled periodically driven double-well Duffing oscillators is investigated as a function of the strength of the driving force f and its frequency Ω. We first examine the stability of the steady state in linear response, and classify the different types of bifurcation likely to occur in this model. We then explore the complex behaviour associated with these bifurcations numerically. Our results show many striking departures from the behaviour of coupled driven Duffing Oscillators with single well-potentials, as characterised by Kozlowski et al [1]. In addition to the well known routes to chaos already encountered in a one-dimensional Duffing oscillator, our model exhibits imbricated period-doubling of both types, symmetry-breaking, sudden chaos and a great abundance of Hopf bifurcations, many of which occur more than once for a given driving frequency. We explore the chaotic behaviour of our model using two indicators, namely Lyapunov exponents and the power spectrum. Poincaré cross-sections and phase portraits are also plotted to show the manifestation of coexisting periodic and chaotic attractors including the destruction of T 2 tori doubling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Series -Aftertreatment Technique for Nonlinear Cubic Duffing and Double-Well Duffing Oscillators

Modeling of large amplitude of structures such as slender, flexible cantilever beam and fluid-structure resting on nonlinear elastic foundations or subjected to stretching effects often lead to strongly nonlinear models of Duffing equations which are not amendable to exact analytical methods. In this work, explicit analytical solutions to the large amplitude nonlinear oscillation systems of cub...

متن کامل

Nonlinear Dynamics of a Periodically Driven Duffing Resonator Coupled to a Van der Pol Oscillator

We explore the dynamics of a periodically driven Duffing resonator coupled elastically to a van der Pol oscillator in the case of 1 : 1 internal resonance in the cases of weak and strong coupling. Whilst strong coupling leads to dominating synchronization, the weak coupling case leads to a multitude of complex behaviours. A two-time scales method is used to obtain the frequencyamplitude modulat...

متن کامل

Frequency–driven chaos in the electrical circuit of Duffing-Holmes oscillator and its control

Accurate detection of weak periodic signals within noise and possibility of secure messaging have made Duffing oscillator (DO) highly important in the field of communication. Investigation on the properties of DO is thus ardently sought for. An elegant approach to accomplish the same is to fabricate electronic circuit simulating DO non-linear equation and to study the effect of input signal amp...

متن کامل

Dynamic quantum tunneling in mesoscopic driven Duffing oscillators.

We investigate the dynamic quantum tunneling between two attractors of a mesoscopic driven Duffing oscillator. We find that, in addition to inducing a remarkable quantum shift of the bifurcation point, the mesoscopic nature also results in a perfect linear scaling behavior for the tunneling rate with the driving distance to the shifted bifurcation point.

متن کامل

Coupled van der Pol – Duffing oscillators: phase dynamics and structure of synchronization tongues

Synchronization in the system of coupled non-identical nonisochronous Van fer Pol – Duffing oscillators with inertial and dissipative coupling is discussed. Generalized Adler’s equation is obtained and investigated in the presence of all relevant factors affecting the synchronization (nonisochronism of the oscillators, their nonidentity, coupling of the dissipative and inertial type). Character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003